Luminescence of Bi³⁺ in Gallate Garnets

M. Ilmer,^{†,‡} B. C. Grabmaier,[†] and G. Blasse^{*,§}

Siemens AG, Corporate Research and Development, D-81730 München, Germany; Institut für

Kristallographie and Mineralogie, Universität München, Theresienstrasse 41,

D-80333 München, Germany; and Debye Institute, University Utrecht, Postbox 80.000,

3508 TA Utrecht, The Netherlands

Received September 30, 1993. Revised Manuscript Received December 1, 1993*

The luminescence of Bi^{3+} in the garnet structure is described for the first time. It consists of a broad emission band with a maximum at 480 nm. There is a strong analogy with La₂O₃:Bi. Time-resolved spectra are also reported. They yield information on the feeding process of the luminescent centers in the gallate garnet.

Introduction

There has been a strong interest in rare earth aluminate and gallate garnets through the years, because they are interesting host lattices for luminescent ions.^{1,2} Such materials have promise for several applications, like lighting,³ lasers,^{1,2} and computed tomography.^{4–6} Powders, crystals, as well as ceramic samples have been studied.

In view of the potential of garnet ceramics in computed tomography,^{4,6} we have studied several gallate garnets, like Gd₃Ga₅O₁₂. One of the dopants was Cr³⁺. Our results agree with data in the literature, viz., Cr³⁺ gives an efficient ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ broad-band emission at room temperature. Replacing Gd by Y results in an increase of the sharp-line ${}^{2}E \rightarrow {}^{4}A_{2}$ emission of Cr³⁺.

Another potential dopant is Bi^{3+} . As far as we are aware, the luminescence of Bi^{3+} in the garnet structure is not known. In this paper the Bi^{3+} luminescence in the garnet system (Y,Gd)₃Ga₅O₁₂ is reported.

Experimental Section

Samples were prepared as described in ref 5. Using a final firing temperature of 1400 °C yields ceramic tablets which have 60% of the theoretical density. Firing at 1650 °C in O₂ yields dense and, depending on the dopant, transparant samples. X-ray diffraction showed these to be single-phase garnets.

The bismuth dopant presents a special problem due to the high volatility at the sintering temperatures applied. Addition of Bi_2O_3 powder appeared to be helpful. Samples appeared to be single-phase up to 6.7 mol % bismuth for gadolinium. According to chemical analysis after sintering this sample contains only 2.7 mol % bismuth. The lattice parameter of this sample was the same as for the undoped

- Abstract published in Advance ACS Abstracts, January 1, 1994.
 (1) See, for example: Nie, W.; Monteil, A.; Boulon, G. In Advances
- in Nonradiative Processes in Solids; Di Bartolo, B., Ed.; Plenum Press: New York, 1991; p 425.
- (2) Brenier, A.; Boulon, G.; Pedrini, C.; Madej, C. J. Appl. Phys. 1992, 71, 6062.
- (3) Smets, B., p 353 in ref 1.
 (4) Tsoukala, V. G.; Greskovich, C. D. European Patent Application, 0467044 A2, May 1991.
- (5) Blasse, G.; Grabmaier, B. C.; Ostertag, M. J. Alloys Compd. 1993, 200, 17.
- (6) Greskovich, C. D.; Cusano, D.; Hoffman, D.; Riedner, R. J. Am. Ceram. Soc. Bull. 1992, 71, 1120.

Figure 1. Emission spectrum of $Gd_3Ga_5O_{12}$:Bi³⁺, $\lambda_{ex} = 297$ nm, 300 K.

sample within the accuracy of the measurements. The bismuth-doped samples are characterized by a bluish luminescence.

Optical measurements were performed at room temperature using a Shimadzu RF-5001PC spectrofluorometer equipped with a 150-W Xe lamp and a Hamamatsu X-ray tube (55 kV, 35 mA). Time-resolved emission spectra were measured using pulsed excitation with an ArF excimer laser ($\lambda = 193.3$ nm). The pulse half-width is about 30 ns.⁷

Results

Samples with composition $(Y,Gd)_3Ga_5O_{12}:Bi^{3+}$ show an intense bluish photoluminescence at room temperature. The emission spectrum is independent of the Y/Gd ratio and consists of a broad band with a maximum at 480 nm. This is shown in Figure 1 for $Gd_3Ga_5O_{12}:Bi^{3+}$. The corresponding excitation spectra depend slightly on the Y/Gd ratio (see Figure 2). They consist of two bands. In the case of $Gd_3Ga_5O_{12}:Bi^{3+}$ their maxima are 310 and 270 nm. The introduction of yttrium for gadolinium shifts these maxima to shorter wavelength, resulting in the values 305 and 260 nm for $Y_3Ga_5O_{12}:Bi^{3+}$. The Stokes shift of the emission is therefore about 11 000 cm⁻¹.

Comparison with the reflection spectrum of $Gd_3Ga_5O_{12}^8$ shows that the shorter-wavelength excitation band cor-

[†]Siemens AG.

[‡] Universität München.

[§] Debye Institute.

⁽⁷⁾ Bayer, E. Lambda Highlights 1992, 36/37, 4.

⁽⁸⁾ Lammers, M. J. J.; Severin, J. W.; Blasse, G. J. Electrochem. Soc. 1987, 134, 2356.

Figure 2. Excitation spectra of the luminescence of $Y_3Ga_5O_{12}$: Bi³⁺ (--) and Gd₃Ga₅O₁₂:Bi³⁺ (---), $\lambda_{em} = 473$ nm, 300 K.

responds to host lattice excitation. The longer-wavelength excitation band and the emission band are due to the dopant Bi^{3+} .

The decay time of the emission under excimer-laser excitation amounts to $(2.5 \pm 0.5) \mu s$, a characteristic value for Bi^{3+,9} The time-resolved emission spectra under excimer-laser excitation are given in Figure 3. Three emissions can be distinguished, viz., in the long-wavelength ultraviolet (maximum ≈ 360 nm), in the blue-green (maximum ≈ 480 nm), and in the deep-red (maximum ≈ 720 nm). They are due to the host lattice,⁸ the Bi³⁺ ion, and a Cr³⁺ impurity,² respectively. Integration over time shows that the Bi³⁺ emission dominates.

This is different for the emission spectrum under X-ray excitation (Figure 4), which shows a much larger amount of Cr^{3+} emission. This shows that the surface layer of the ceramic samples contains relatively more bismuth, since the excimer laser excites the surface layer only. The X-ray excited emission spectrum shows also the rare-earth-metal impurity Tb^{3+} . Its emission originates from the lowest emitting level only (${}^{5}D_{4}$). The Tb^{3+} lines are at 490, 550, 590, and 620 nm.

Discussion

The emission band with a maximum at 480 nm is clearly related to the presence of the dopant ion Bi^{3+} . The luminescence of Bi^{3+} has been extensively studied in several hosts, but many unsolved questions remain.^{10,11} At room temperature the emission is due to the ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ transition, whereas the lowest absorption band is the ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ transition. The spin-selection rule is considerably relaxed by the strong spin-orbit coupling in Bi^{3+} . It seems obvious to assign the 310-nm excitation band and the 480-nm emission band of $Gd_{3}Ga_{5}O_{12}$: Bi^{3+} to the ${}^{1}S_{0} \leftrightarrow {}^{3}P_{1}$ transitions.

The Bi³⁺ ion in the garnet structure will replace the rare-earth-metal ion in view of its ionic size. Therefore it occupies an eight-coordinated site. The analogy between the luminescence of Bi³⁺ in Gd₃Ga₅O₁₂ and La₂O₃ is striking: La₂O₃:Bi³⁺ shows an emission at 470 nm with excitation bands at 310 and 250 nm.⁹ In La₂O₃ the Bi³⁺

Intensity (arb. units)

Intensity (arb, units)

400

23.5 µs 23.5 µs 123 µs

500

 μ s after the excitation pulse of the excimer laser.

Wavelength \longrightarrow **Figure 3.** (a) Time-resolved emission spectra of Gd₃Ga₅O₁₂: Bi³⁺, 3.4-23.4 μ s after the excitation pulse of the excimer laser. (b) Time-resolved emission spectra of Gd₃Ga₅O₁₂:Bi³⁺, 23.5-123.0

600

700 nm

Figure 4. Emission spectrum of $Gd_3Ga_5O_{12}$:Bi³⁺ under X-ray excitation at 300 K. The Tb³⁺ emission lines are indicated by crosses.

ion is coordinated by seven oxygen ions. The absorption edge of undoped $Gd_3Ga_5O_{12}$ and La_2O_3 are also practically the same.

⁽⁹⁾ Boulon, G. J. Phys. 1971, 32, 333.

⁽¹⁰⁾ Blasse, G. Prog. Solid State Chem. 1988, 18, 79.
(11) Blasse, G. Mater. Chem. Phys. 1987, 16, 201.

Table 1. Luminescence Data on Some Bi³⁺-Activated Compounds⁴

composition	au (300 K), μ s	Bi ³⁺ coordination	optical bandgap host lattice, eV	ref
Gd ₃ Ga ₅ O ₁₂ :Bi ³⁺	2.5	8	5	this work
La ₂ O ₃ :Bi ³⁺ YVO ₄ :Bi ³⁺ LaBO ₃ :Bi ³⁺	0.3 5 <0.1	7 8 9	5 3.5 ≈8	9 9 13

^a The Stokes shifts of the emission are equal to within 1000 cm^{-1} .

It may be questioned whether the excited ${}^{3}P_{1}$ level is very close to or even in the conduction band in these two host lattices. In that case the excited state should be considered as an impurity-bound exciton in which the hole resides on the Bi³⁺ ion and the electron occupies levels of the conduction band (i.e., mixed gallate-oxygen and mixed lanthanum-oxygen states). Such a description seems to be valid for Bi³⁺ in YVO₄.¹² Due to a decreasing spinorbit coupling (nephelauxetic effect) the decay time of the Bi³⁺ luminescence is expected to become longer, and the exciton model becomes more appropriate because the excited state is more extended.

The data given in Table 1 seem to confirm this description. The smaller the optical bandgap E_g of the host is, the longer the decay time at room temperature. Obviously the exciton model is a better description for $Gd_3Ga_5O_{12}$:Bi³⁺ than for La₂O₃:Bi³⁺. This can simply be due to a slightly lower position of the energy levels of Bi³⁺ in the forbidden zone of La₂O₃. In spite of these results, the exact nature of the excited state remains an open questions.

Let us now turn to the host-lattice-excited emission spectra (Figure 3). The X-ray excited spectrum shows the presence of Tb^{3+} (impurity in the starting Gd_2O_3 on a ppm level) and Cr^{3+} (impurity in Ga_2O_3 and/or the synthesis environment) in addition to the Bi^{3+} emission. Since the bismuth concentration is orders of magnitude larger than those of the impurities, Figure 4 shows that especially Cr^{3+} captures the created electrons and holes very efficiently.

The time-resolved emission spectra (Figure 3) show immediately (i.e., $3.4 \ \mu s$) after the excitation pulse host lattice emission and Bi³⁺ emission. This host lattice emission agrees with literature data⁸ and can be ascribed to octahedral gallate charge-transfer luminescence.¹⁴ Since the decay time of Cr³⁺ in Gd₃Ga₅O₁₂ is about 150 μs (ref 4 and this work), it is not observed at this time.

A long time after the pulse ($\approx 100 \ \mu$ s) the Bi³⁺ emission has to be considered as afterglow, but the Cr³⁺ emission is still prompt. Following a model presented earlier,⁵ these data are interpreted as follows: The X-ray excitation yields electrons and holes. A small part of these recombine on the octahedral gallate groups; at 4.2 K this is the dominating (self-trapped exciton) emission.⁸ A dominant part recombines at the Bi³⁺ dopant. Within 3 μ s after the pulse the excited state of the dopant has captured this part. The Cr³⁺ ions capture a hole which recombines with an electron.⁵

Afterglow is due to the presence of electron traps (oxygen vacancies⁵). This suggests that the Bi³⁺ ion captures a hole which recombines later with an electron. This fits with the model proposed for the excited level of Bi³⁺. If this level is close to or in the conduction band, electron trapping is not very probable. The considerable amount of afterglow in these samples is detrimental for application in computed tomography. Gd₃Ga₅O₁₂:Tb³⁺, an efficient green X-ray phosphor, can for the same reason not be applied in X-ray imaging.⁸

In conclusion, the Bi^{3+} ion in gallate garnets shows an efficient broad-band emission with a maximum at 480 nm. The Bi^{3+} ion in gallate garnets captures holes.

Acknowledgment. The authors thank Dr. E. Bayer for performing the time-resolved measurements and Dr. W. Köstler for the X-ray excited spectrum.

⁽¹²⁾ Blasse, G. Struct. Bonding 1991, 76, 153.

⁽¹³⁾ Wolfert, A.; Oomen, E. W. J. L.; Blasse, G. J. Solid State Chem. 1985, 59, 280.

⁽¹⁴⁾ Dirksen, G. J.; Hoffman, A. N. J. M.; Bout van de, T. P.; Laudy, M. P. G.; Blasse, G. J. Mater. Chem. 1991, 1, 1001.